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In cluster approximations for lattice systems the thermodynamic behavior of the 
infinite system is inferred from that of a relatively small, finite subsystem 
(cluster), approximations being made for the influence of the surrounding 
system. In this context we study, for translation-invariant classical lattice 
systems, the conditions under which a state for a cluster admits an extension to 
a global translation-invariant state. This extension problem is related to 
undecidable tiling problems. The implication is that restrictions of global trans- 
lation-invariant states cannot be characterized purely locally in general. This 
means that there is an unavoidable element of uncertainty in the application of 
a cluster approximation. 

KEY WORDS: Classical lattice system; variational principle; cluster variation 
method; tiling problem; undecidability. 

1. I N T R O D U C T I O N  

This paper  is the four th  in a series (1 3) that  repor ts  on an inves t iga t ion  into  
ma thema t i ca l  aspects  of the cluster  var ia t ion  m e t h o d  (CVM).  (4-6) The  
C V M  is a sys temat ic  a p p r o a c h  t o w a r d  the genera t ion  of a p p r o x i m a t e  
express ions  for the free energy densi ty  of  t r ans l a t ion - inva r i an t  classical  
lat t ice systems. As the a p p r o x i m a t e  express ion depends  on only  a finite 
n u m b e r  of  variables ,  a s t ra igh t fo rward  min imiza t ion  p rocedure  then yields 
in format ion  abou t  the equ i l ib r ium t h e r m o d y n a m i c s  of  the system. 

Despi te  its l imi ta t ions  (e.g., it is k n o w n  that  cri t ical  exponents  canno t  
be r ep roduced  correc t ly  by the CVM(7)), the C V M  seems to be the best  
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available approximation technique for calculating phase diagrams of 
realistic systems from molecular interaction. (8) Despite extensive use during 
the past decades, little effort has been spent on clarifying the mathematical  
structure of the CVM. 

The CVM can conveniently be related to the variational principle for 
the free energy as valid for an infinite lattice system, which involves 
variation over all translation-invariant thermodynamic states. (9'1~ It then 
turns out that the CVM involves two distinct steps of approximation: the 
first one is a truncation of a cluster expansion for the mean entropy, and 
the second one is allowing variation over a certain set of local states, 
defined for a finite part  of the lattice, often referred to as the basic cluster 
of the approximation. (1) This second step is justified if such a local 
state allows extension to a translation-invariant state of the infinite 
system. (3,HA2) This extension problem is the subject of the present paper. 

In order to make the problem definition precise, we first give a 
description of the lattice system that we consider and introduce some 
notation. We follow largely Ref. 10. 

With each latice point or site a of the v-dimensional lattice Z ~ we 
associate a variable ("spin") aa, which can have values in a finite set t?o, 
the one-site configuration space. The configuration space for a subset X of 
Z ~ is then ~ x  = (t?0) x. By putting on f2 0 the discrete metric, we can make 
f2 o into a metric and a topological space. The topology of f2 x will be the 
product topology. In this topology t2 x is compact,  even if X is infinite. 

The configuration space f2z, for the thermodynamic (infinite) system 
on the whole lattice will be denoted simply by t2. If X, Y c Z  ~ and 
X c~ Y= ~ and COx ~ t2x, CO r ~ ~2 y, we denote by COx x CO r the configuration 
on X w  Y that coincides with COx on X and with CO), on Y. If CO is any 
configuration on X and Y c X, we denote the restriction of CO to Y by COy. 

We let C(t?x) denote the real-valued continuous functions on (2x. If 
Y c  X, then C(t? r) has a natural embedding in C(t2x),  which will never be 
made explicit, i.e., any f e  C(f2 r) will be regarded as an element of C(t?x)  if 
it is convenient to do so. 

On ~o we take as a priori measure the (unnormalized) counting 
measure #0. The product measure on t2 x will be denoted by #x. Integration 
with respect to #x will be denoted by the symbol ( .  }x. A state of the 
system is a positive linear functional p on C(f2), with normalization 
p ( 1 ) =  1. By restriction to C(f2x),  X finite, it defines a density function 
p [ X ]  ~ C(t-2x) such that for all f ~ C(f2x) 

p ( f )  = ( f  . p [ X ]  ) ~  (1) 

For  convenience we define p [ ~ ]  to be 1. 
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Translation over a ~ Z v will be denoted by %; the translations on Z ~ 
induce translations on f/, on C(f2), and on the states; the symbol ra will be 
used indiscriminately for all of these. I is the set of translation-invariant 
states. It is convex and compact in the weak* (w*)-topology. 

We also define a notion of translational invariance for states defined 
on a subset A of Z~: a state PA on C(f2A) is locally translational 
invariant (2'3'12) if 

PA(U) = p~(raf) (2) 

for all f � 9  C(s and all a � 9  Z v such that % f � 9  C(t2A). (Recall that embed- 
dings are not made explicit.) The set of such states is denoted by IA. 

The interaction ~b: X c  Z ~ X finite ~ ~ [ X ]  �9 C(f2x) is required to be 
translation-invariant; the range R(~)  

R(r U { x~  z= [ IXI < oo, o �9  ,~[Xl ~o} (3) 

is required to be finite: [R(~b)[ < oe. Here IX[ denotes the number of sites of 
X. An observable that represents the mean energy in any translation- 
invariant state is then 

~[X] 
A ~ =  ~ [XI (4) 

X ~ 0  

The mean entropy s(p) of a p �9 I is given by 

s (p )=  lim S~ (5) 
A~zo  IAI 

with the entropy for the cluster ( =  finite set of lattice sites) A given by 

Sp[A]  = - p ( l o g p [ A ] ) =  - (p[A]  log p[A] )g  (6) 

The limit in Eq. (5) is to be taken in the sense of van Hove and exists for 
all p �9 L 

Translation-invariant equilibrium states are characterized by the fact 
that they yield a minimum for the free energy per lattice point or free 
energy density fe (p) :  

f~(p) = p(A~) - s(p) (7) 

Here fl = (kT) 1 has been absorbed into the interaction. 
Practical application of this characterization thus involves treating the 

following minimization problem: 

f~  = min{p(A~) - s(p): p �9 I} (8) 
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The energy term p(Ae) depends only on the restriction of p to C(f2R(r ) 
and thus is a function of a finite number of variables. This is not the case 
for the entropy term s(p), however. The essence of the CVM is to replace 
s(p) in the minization problem of Eq. (8) by a function of a finite number 
of variables. Specifically, s(p) is replaced by a linear combination of cluster 
entropies 

rx(#)= ~ ~A~s~[z] (9) 
X ~ A  

The ~Ax are real coefficients that are determined according to some 
scheme (4'5) from the choice of the basic cluster A, which is chosen such that 
R(m)cA. 

As a result, the object function for minimization now depends only on 
the restriction of p s I to C(f2x) and is thus a function of a finite number of 
variables. The final step in the construction of the CVM approximation is 
to allow variation over p e Ix instead of p e L Thus, the CVM solves 

fA  = min{p(Ae) -- Tx(p): p ~ I x } (10) 

instead of the minization problem of Eq. (8). 
Not  all elements of IA need correspond to restrictions of elements of L 

This fact can lead to erroneous and misleading predictions from the CVM, 
as has been observed in a number of cases. (13'14) To prevent this problem it 
would be necessary to have some suitable characterization of the set I3 of 
local states on C(g2 x) that correspond to restrictions of elements o f / .  It is 
the problem of characterizing I3 that will be discussed in the following 
sections. 

A probably more familiar setting for essentially the same charac- 
terization problem results in the limit T+ 0. Then we are dealing with the 
problem of calculating ground states and ground-state energies for finite- 
ranged interactions. As is well known, this problem can be highly non- 
trivial for models in which frustration occurs, and frustration is just the 
phenomenon that the local energy-minimizing states are not extendable to 
global translation-invariant states. In fact, similar problems can arise in 
conjunction with most applications of variational approximation tech- 
niques. An account of such matters, including illustrations of the use and 
usefulness of having even partial characterizations of the correct search set 
in variational problems, may be found in Ref. 25. Another area of current 
interest where specifically the characterization of I3 is encountered is the 
local structure theory of cellular automata. (26) 

To end this introduction, we remark that the description of the CVM 
given above describes a generic situation. In practical application, details 
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may differ, the main difference being that in general it is not Ae that is 
used to calculate the mean energy, but some other, equivalent observable. 
Also, sometimes more than one basic cluster is used. 

2. E X T E N D A B L E  S T A T E S  

In the following A will be a finite set of lattice points (a cluster) of Z ~ 
Theorem 1 will give necessary and sufficient conditions for a linear 
functional 2 on C(f2A) to be the restriction of a translation-invariant state 
on C(f2). 

D e f i n i t i o n  1. For any f ~ C ( f 2 )  

p ( f )  = max {p(f) :  p ~ I} (11) 

Lemma 1. (i) p is sublinear, i.e., p is subadditive 

P ( f  + g) <~ p ( f )  + p( g) 

for all f ,  g E C(s and positive-homogeneous, 

p( c~f ) = ~p( f  ) 

for all a ~> 0 in R and f e  C(f2). 

(ii) p is convex. 

Proof. Trivial. 

D e f i n i t i o n  2: 

N =  { f 6  C(Y2) ] p ( f )  = 0 for all p e l }  (12) 

N is a closed linear subspace of C(s The quotient space C(f2)/N consists 
of the equivalence classes of observables that have the same expectation 
value for all states in I; we denote this quotient space by M. The associated 
quotient map is denoted by q: 

q: f ~  C(f2) ~ q( f )  ~ M (13) 

If q( f )  = q(g), then we will say that f and g are equivalent with respect to 
translations and we write f ~  g. 

T h e o r e m  1. Let L be a linear subspace of C((2) and let 2 be a real- 
valued linear functional on L. Then there exists a state p e I  such that 
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p ( f ) = 2 ( f )  for all f c L  if and only if 2 satisfies the following two 
conditions: 

(C.1) If f ~ L ,  g e L ,  f~ -g ,  t h e n 2 ( f ) = 2 ( g ) .  

(C.2) 2 ( f )  ~< p( f )  for all f c  L. 

Proof. Let Q = q(L) be the image of L under the quotient map q. 
Then Q is a linear subspace of M. If 2 satisfies C.1, we may define a linear 
functional ? on Q by 

Since 

7(q( f ) )=2( f ) ,  f e L  (14) 

f ~  g implies p( f )  = p(g) (15) 

we may define a functional ~ on M by 

rc(q(f)) = p(f) ,  f c  C(g2) (16) 

Then g is a sublinear (and thus convex) functional on M and if )~ satisfies 
C.2, then 

~ ( x ) ~ ( x )  for all x c Q  (17) 

By the Hahn-Banach theorem there exists a linear extension ~ of ? to the 
whole of M with 

~(x)<~(x) for all x c M  (18) 

Define p: C(f2)--, R by 

p( f )  = ~/(q(f)), f ~ C(g2) (19) 

Then for f c L  we have p ( f ) = ~ ( q ( f ) ) = ? ( q ( f ) ) = 2 ( f ) .  That p is a 
translation-invariant linear functional is obvious. It remains to show that p 
is a state. To that end, note that for all f c  C(f2) 

Consequently, 

and 

p( f )  = ~(q(f) ) <~ rc(q(f) ) = p ( f )  

p ( 1 ) ~ p ( 1 ) =  1 

(20) 

p ( 1 ) =  - p ( - 1 ) ~ - - p ( - 1 ) =  1 
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so p ( 1 ) =  1; and similarly, if f~>0, then 

p(f) = - p ( - f )  >1 - p ( - f )  >~ 0 

Thus, Eq. (19) defines an extension of 2 to the whole of C(O) that is an 
element of L 

This proves sufficiency of C.1 and C.2. The necessity is obvious, since 
both conditions are satisfied by any element o f / .  

T h e o r e m  2. Let 2 be a state on C((2A). Then the following 
statements are equivalent: 

(i) 2~ I~ ,  i.e., 2 ( f )  = ,~ (%f)  for allf~C(f2A) and all a e Z  ~ such that 
"raf~ C(~2A). 

(ii) 2 obeys condition C.1, i.e., if f, gGC(~C2A) and f~-g,  then 
2 ( f )  = 2(g). 

Proof. (ii) implies (i), since % f ~ - f  For the reverse implication, let 
2 e l a .  We must show that fEC(QA)r~N implies 2 ( f ) = 0 .  To that end, 
recall that any f e C ( f 2 )  has a unique decomposition (see, e.g., Ref. 15, 
Section 2.2) 

f =  ~, f [X]  (21) 
X c Z  ~ 

[Xl < oo 
with 

(i) 

(ii) 

f i X ]  ~ C(Qx) (22) 

Z f[X](~215176 (23) 
r  

for all Y c  X and all ~ x \ r ,  provided X #  ~ .  
Take arbitrarily fE  C((2A)c~ N and decompose f as above. Let o be 

the product measure on (2Ac of the normalized counting measure on s 
where A"= Z~A. Then 

X ~ A  X f z A  " X c A  

on account of Eqs. (22) and (23). Since the decomposition o f f  is unique, 

f i X ] = 0  if X ~ z A  (24) 

Actually, for f ~  C(12A) with A and 12 o finite, the decomposition (2l) can 
easily be made explicit: with the use of a partial trace notation 

1 
(trxf)(oOA\X)=[g2xi<ox~axf(CnxX~OA\x) if X c A ,  X # ~  

t rx f= f if X = ~  
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we can define f[Y] by 

f[X]=trA\x[ ~ ( - l ) l Y / t r r f ]  
Y ~ X  

f [ J ( ] = 0  if Y~ A 

and verification of Eqs. (21)-(24) is straightforward. 
Now define 

jr= f [ ~ ]  + E jr[x] 
x~o IXl 

with, for X r 2~, 

if Xc A 

Schlijper 

(2s) 

jT[X]= ~ r of[taX ] (26) 
a ~ Z  ~ 

[this is a finite sum due to Eq. (24)].  Then (cf. Ref. 15, Section 7.1): 

(i) jr[X] ~C(12x) (27) 

(ii) rajr[X] = Jr[z~X ] (28) 

(iii) j r ~ f  (29) 

Furthermore, with I[" [[ denoting the supremum norm, 

IlYfX]II (30) 
inf ~ II g[X]lt -~ I f [ ~ ] ]  + ~ IX} 

g ~ f  eY X ~ O  

(cf. Ref. 15, Theorem 7.2). 
Since f 6 N, we have f ~ 0, so 

S[.Q~ ] =0  (31) 

(32) jr[K] = 0 for all J( 

Combining Eqs. (24), (26), and (32) gives 

r _ a f [ % Y ]  --- 0 
a ~ Z U :  

" t a x  c A 

For X c  A we can apply 2 to this expression: 

0-= ~ ,~(v_a/[%X])= Z 2(f[~aX]), 
a ~ Z  v a ~ Z  ~ 

tax ~ A ~ a X  ~ A 

and 

XcA (34) 

for all X (33) 
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Hence 

A / X ~ A  X a ~ Z  ~ 
r a w  ~ A 

2 ( f [ % X ] )  = 0 

where ~*  denotes summation over equivalence classes with respect to 
translations. 

D e f i n i t i o n  3. If Hcff2A, then its characteristic function X ~  
C(f2A) is given by 

Z~(co) : 1 if co ~ H 

= 0  if coCH 

where co ~ OA. If H consists of a single configuration a, then we write X A 
for ) ~ .  

Since any f ~  C(f2A) has the representation 

f =  ~ f (a ) .Z  A (35) 
a E  g-d A 

any state 2 on C(s is completely specified by the values 2(zA); moreover, 
to guarantee that 2 ~ IA, it suffices to have 

2(Z x) = 2(%7~ x) (36) 

for any X c A  and a ~ Z  ~ such that r a X c A .  With 

= Z A (Z~ • o~) (37) 
o2 E U2A\ X 

this means that condition C.1 of Theorem 1 is equivalent to a finite number 
of linear equality constraints on the parameters pA(cr) = 2(zA). Indeed, it is 
precisely this set of constraints that is taken into account in practical 
application of the CVM. 

With respect to the boundedness condition C.2, the situation is 
different. As pointed out in the Introduction, in the CVM the variation is 
performed over IA and no condition whatsoever is imposed to guarantee 
C.2. This negligence cannot be justified a priori, since in general not all 
elements of IA satisfy C.2; in other words, the set of extendable states I]  is 
in general a proper subset of I A. This may be illustrated by the following 
example on Z 2. Take s 0 = { - ,  0, + } and let A consist of three points 
of Z2: 

A = {a, b, c} = {(0, 1), (0, 0), (1, 0)} 
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Define a state 2 on C(G2A) by specification of the probabilities 
p~(a~, ab, crc) assigned by 2 to configurations on A: 

p~(O, o, + ) = p~( + ,  - ,  - ) = p ~ . ( - ,  + ,  o) = 1/3 
(38) 

all others = 0 

One easily verifies, using Eq. (36), that 2 E IA. Yet 2 cannot be extended to 
an element 2 + of IA + with A + = A w {(1, 1)}, let alone to an element of L 
Indeed, there is no configuration in (2~ + to which ;t + can assign a positive 
probability without immediately contradicting either translational 
invariance or the specifications of Eq. (38). 

Another, very familiar, example arises in the application of the CVM 
with the nearest neighbor pairs as basic clusters to the Ising 
antiferromagnet on the triangular lattice. Then, the approximation predicts 
that the probability of finding opposite spins on each nearest neighbor pair 
of sites tends to one as the temperature tends to zero. (11) Such a state, 
however, has no extension either, because of the frustration effect. 

T h e o r e m  3, IA is compact and convex and has a finite number of 
extremal points. I ]  is a compact and convex (in general proper) subset 
of 14. 

Proof. As each state 2 on C(f2A) is defined by the values 
2(Z~)= p;.(a) (i.e., the probability of finding the configuration cr on A in 
the state ).), I is isomorphic with a subset of R N, with N =  112o11An (recall 
[A[ < oe); this subset is defined by a finite number of equalities (from nor- 
malization and translational invariance) and inequalities (from positivity), 
from which the first statement follows. 

The compactness and convexity of I3 are consequences of the w*-com- 
pactness and of the convexity of L 

At this point one might speculate whether in general I~ is the convex 
hull of the extendable extremal elements of 14. Such speculation arises from 
consideration of a practice that is sometimes empoyed in applications of 
the CVM. (27) If an extremal element of IA is obviously nonextendable (it 
then corresponds to what de Fontaine refers to as a "nonconstructable 
structure"), then the search set is changed to the convex hull of the 
remaining extremal points, in an adhoc attempt to prevent erroneous 
results. Similar procedures are employed in the determination of the T =  0 
phase diagram (cf. Section 4). 

To provide a theoretical foundation for this practice, the above 
speculation must be proven to be true. If then also a general method can be 
found to decide whether or not any given extremal element of I A is 
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extendable, then it would generally be possible to perform the variation in 
the CVM over I3 instead of over IA and thus to increase the reliability of 
this approximation method. 

At the start of this investigation, our goal was to carry through this 
program. As it turns out, this goal is unattainable. In the next section we 
show this by establishing a connection with tiling problems. One last obser- 
vation must be made to set the scene: the extremal points of IA are such 
that the defining probabilities pA(a) are all rational numbers. This follows 
since the constraints that define I A involve only integers. In other words, if 
I A is viewed as a subset of R N, as in the proof of Theorem 3, then its 
extremal points are all in QN. It is thus, at least in principle, possible to 
calculate all the extremal elements of I A with absolute precision, i.e., 
without any numerical inaccuracy (an algorithm to do so can be found in 
Rcf. 16, Section 53). 

3. T I L I N G  A N D  U N D E C I D A B I L I T Y  

In this section we show that the problem of characterizing the set I~ of 
extendable, locally translation-invariant states on C(t?A), A finite, is 
intimately connected with tiling problems and the so-called domino 
problem, which is known to be formally undecidable. 

Defini t ion 4. The support supp(2) of a state 2 on C(s is the 
subset of fJA with the following property: 

co e supp(2) .~- 2(Z A) > 0 (39) 

Defini t ion 5. A subset H of s is said to be tiling if there exists a 
configuration co e t? on Z ~ such that 

r_aco~oA e H (40) 

for all a e Z ~ One says that H is strictly tiling if H is tiling and every 
proper subset of H is not tiling. 

Theorem 4. If 2 e I S, then supp(2) is tiling. 

Proof. 2 e i 3 ,  so 2 has an extension p s L  Suppose supp(2) is not 
tiling. This implies that there is some cube C, with sides n in Z v with the 
following property: for every configuration a ~ (2e, there is an a e Z ~ such 
that raA c ~ ,  and 

r_aa~A ~ KA = DA\supp(2) 

Indeed, if this were not the case, then we would be able to take a seqaence 

822/50/3-4-15 
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of cubes C, with C ,  ~ Z ~ and a corresponding sequence of configurations 
a ,  E s such that we would have 

~a%a e supp(2) 

for all a ~ Z ~ with %A c C,. Taking arbitrary extensions m, ~ g2 of these 
local configurations o-,, the compactness of s would then provide us with 
the existence of a limit configuration ~oes that satisfies the tiling 
condition: ~ -,,~%oA E supp(2) for all a ~ Z ~ 

Now consider the restriction p,  of the state p e I to C(g2e, ). Since s 
is finite, there is at least one local configuration # e De.  such that 

However, for some a we have ~-~#~.A = ~ e KA.  Denote %A by A'; using 
translational invariance, we find 

=pId ) 

= E . . . .  ) 

and this contradicts that # ~ K 4  = QA\supp(2). 
Thus, supp(2) must be tiling. 

T h e o r e m  5. Let H c Q  A. 

(i) If H is tiling, then there exists a 2 e I~ with supp(2 )c  H. 

(ii) If H is strictly tiling, then there exists a ,~eI~ with supp(2)= H. 

Proof .  (i) Since H is tiling, there exists an c o ~  such that 

a (J).caA ~ H 

for all a ~ Z ~ Let Cn be the cube in Z ~ with the origin as its first point (in 
lexicographic order) and sides n. Let chn e s be the periodic continuation of 
the restriction of co to Cn. Define pn e I by 

1 ~ %f(a3~) 
P'~(f)  = n-; a ~ Cn 

(41) 
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Let d be the side of the smallest cube that contains A. Then, for arbitrary 

a ~ H" = QA\H,  

p.(z2) no 
a~Cn 

1 
{n ~  ( n - d )  ~ 

= 1 -  ( 1 - ~ d )  ~ (42) 

Since I is w*-compact, there exists a subsequence (p=) that converges w* to 
some p e l .  Let )o be the restriction of p to C(YIA). Then 2~I~  and by 
Eq. (42) 

2(H A) = p(z A) = 0 (43) 

for all a e H C, which means that supp (2 )c  H. 

(ii) Now suppose we have in addition that H is strictly tiling. Take 
an arbitrary a e H. Then H = H \ { a }  is not tiling. This implies that there 
is an N such that the restriction of the tiling configuration ~ to any 
translate of the cube CN has the property that 

r _ a c o ~  = a (44) 

for some a ~ Z ~ with GA contained in this translate of CN (cf. the argument 
used in the proof of Theorem 4). Now cover the lattice with disjunct trans- 
lates of CN. Loosely speaking, Eq. (44) then states that in the configuration 
cn we will find the local configuration a at least once within every such 
translate. Consequently, 

i  =zJ(G) 
P=() I )  n o 

aECn 

(1/ 
> (45) 

for all n >7 N and thus 

Since this holds for arbitrary a ~ H, we have now that supp(2)=  H. 

(46) 
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Next, we shall relate the concept of tiling to the functional p (cf. 
Definition 1 ). 

Lemma 1. For any f ~  C(C2) 

p(f)  =inf  sup --1 ~ %f(~o) (47) 
n ~ n ~  

where C, is the cube in Z ~ with sides n and the origin as its first point in 
lexicographic order. 

ProoL Define an auxiliary function Fs, defined on finite subsets X of 
Z ~, for each f ~  C(C2): 

FI[X ] = sup ~ %f(co) (48) 
r a ~ X  

One verifies without difficulty that F s has the following properties: 

(i) F s is subadditive: if X~ c~ )(2 = ~ ,  then 

Fs[ X~ ~ )(2] <~ Fs[ X~ ] + Fs[ X2] (49) 

(ii) F sis translation-invariant: 

FI[%X ] = Fi[Y ] (50) 

(iii) The following condition holds: 

inf f(~o)~Ff[X]/[X[ ~ sup f(~o) (51) 
coE(2 c o E ~  

By a standard argument (see, for instance, Ref. 15, Theorem4.10), the 
above properties imply that the limit 

p2 ( / )=  lim FI[C"] (52) 
n ~  I C . I  

exists and that 

Now write 

P2(f) = inf Fr C,] (53) 
n iCnl  

1 
R n _ _  % f  (54) f - - n  ~ 

aE C n 
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Then for any p ~ I and any n 

p ( f )  = p(R]) <<. sup RT(o) 
co~f'2 

Thus, 

p ( f )  = max ; ( f )  <~ inf sup R~(co) = Pz( f )  
p ~ I  n cocg2 
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(55) 

Thus 

lim sup Rf,(o) ) = p2(h) <~ 0 

By the sublinearity of P2 we then have 

P2( g) = P2( f  + h) <<. P2( f )  + pz(h) ~< Pz( f )  

Reversing the roles of f and g yields p2(f)<~p2(g),  and thus 

P2(f)  = P2(g). 
We now define a sublinear functional n2 on M =  C(g2)/N by 

rc2(q(f)) = P2(f),  f E  C(~)  (56) 

Take f e  C(g?) fixed. We shall show the existence of a ps~ I with p j ( f )  = 
P2(f),  which implies p(f)>1 P2(f).  

Define a linear functional/3 on the subspace of M that is spanned by 
the element q ( f )  E M by 

f l (~q(f))  = c~fl(q(f)) = ~P2(f), ~ ~ R (57) 

For  e/> 0, we have, since P2 is positive-homogeneous, 

fl(c~q(f) ) = p2(ccf ) = ~2(c~q(f) ) (58) 

For  cr < 0, since P2 is subadditive and thus 

0 = p2(0) ~< Pz(U) + P 2 ( - f )  (59) 

1 
lira - -  ~ r~h = 0  

n ~ c ~  lq v a ~ C n  

To prove the reverse inequality, we note that the functional P2 is sublinear 
and convex, as can be shown by a straightforward calculation. Moreover, if 
f ~ g ,  then p z ( f ) = p 2 ( g ) ,  by the following argument: f g g  implies 
g - f = h ~ O .  Then, by Theorem 7.1 of Ref. 15, 
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we have 

fl(ocq(f) ) = 7P2(f) = ( - ~) " ( -P2(U))  

<~ ( - r  P 2 ( - f )  = P2(~f) = nz(aq(f)) (60) 

Equations (58) and (60) show that fl is majorised by zt 2 and the 
Hahn-Banach theorem ensures the existence of a linear extension ~ of fl to 
the whole of M with 

~(q(g))<~zc2(q(g)) for all g~C([2)  (61) 

Now define Ps by 

p f ( g ) = ~ ( q ( g ) ) ,  g~C((2)  (62) 

As in the proof of Theorem 1, it can be shown that p f~L  Since 
PI( f )  = P2( f )  by construction, we have now shown that 

p ( f )  = max{p(/) :  p ~ I} >~ P2(f )  (63) 

Equations (55) and (63) yield the lemma. 

k o m m a  2. For f ~  C(s 

p ( f )  -= max {2(f): 2 ~ I~ } (64) 

Proof. Trivial. 

T h e o r e m  6. H c / 2  A is tiling if and only if p(z  A) = 1. 

Proof. Suppose H is tiling. Then there is an ch ~/2 such that, for all 
a ~ Z  v, r a6ToA~H, or [Z ae3]A~H;thus,  

%zA((o) = zA(r_~,e3) = 1 

Hence, for all n, 

Thus, 

1 
,--; cozY(e,)= 1 

a ~  Cn 

sup 1 ~ zazA(o~)>~ 1 
~j ~ ~ l"l a ~ Cn 

and thus, by Lemma 1, p(z A) >/1. 
Obviously p(z A) ~< 1, so it follows that p(z  A) = 1, which proves the 

first part of the theorem. 
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As to the reverse implication, suppose p ( ) ~ ) =  1. By Lemma 1 this 
implies 

1 
sup ~ ~ razA(o))= 1 (65) 
co~Q a~Cn 

for all n. This means that for all n there exists a configuration 05, on A, = 
0{%A: a e  C,} such that for each a e  C, 

The compactness of ~2 then yields the existence of a tiling configuration 
05~Q. 

Remark. Theorem 6 in combination with Lemma 2 immediately 
yields alternative proofs of Theorems 4 and 5. In fact, we now have the 
following result: 

Corollary 1. Let E(FA) denote the set of extremal points of I ] .  

(i) H = f f 2  A is tiling if and only if there exists a 2~E(FA) with 
supp(2) ~ H. 

(ii) If H c •  A is strictly tiling, then there exists a 2 ~ E ( I ] )  with 
supp(2) = H. 

Proof. Suppose H is tiling. By Theorem 6 this implies p(z A) = 1. By 
Lemma2 this implies m a x { 2 ( z A ) : 2 ~ I S } = l .  Since this involves the 
maximum of a linear functional of 2 over the compact and convex set I~ 
(Theorem 3), the maximum is assumed in an extremal point 2o ~ E(FA). 
Then 2o(Z A) = 1 implies supp(2o) c H. Theorem 4 implies that supp(20) is 
tiling; so, first, if H is strictly tiling, then supp(2o)= H, and second, this 
implies again that H is tiling. 

Corollary 2. H c f2 A is tiling if and only if 

max{2(zA): 2 ~ E(IS) } = 1 

Proof. A trivial consequence of Theorem 6. 

As pointed out at the end of Section 2, the simple structure of the set 
I~ of locally translation-invariant states on C(s (over which set the 
variation in the CVM is performed) makes it possible to identify with 
absolute precision all the extremal points of I A. In this sense a complete 
and exact characterization of I A is possible. Corollary 2 implies that the set 
I3 of extendable, locally translation-invariant states (over which set one 
would like to perform the variation in the CVM) does not permit such a 
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characterization. To show this, we consider the problem of determining in 
general whether any given subset H of g2 A = (•o) A, for any given ~o and 
any given A c Z", is tiling or not. Let us call this problem the tiling 
problem. The tiling problem is a so-called undecidable problem ~ 2o) if 
0 # 1. Roughly speaking, this means that there does not exist a general 
criterion that, given Qo, A, and H, enables one to verify, in a finite amount  
of time, whether H is tiling or not. The word "general" here means that the 
criterion must be applicable to, and yield a definite answer for, any triple 
{Qo, A, H}. Another formulation of this undecidability problem is the 
following: it is not possible to write a computer program, no matter how 
complicated, that is guaranteed to come up with the answer to the 
question: "Is H tiling?" in a finite amount of time, for arbitrary {~o, A, H}. 
This does not preclude the possibility that such a program exists for 
subclasses of the general problem, however; the number of "decidable 
subclasses" will then be infinite, or else they will not cover the entire 
general problem. 

The tiling problem is undecidable because the so-called domino 
problem, which is known to be undecidable, ~21/ may be identified with a 
subclass of the general tiling problem. 

The domino problem is the following. 
Suppose that we are given a finite set of unit squares, the dominoes, 

whose edges are marked with symbols (say, colors), each domino in a 
different manner. Assume that we have an unlimited number of copies of 
each type of domino. We seek to assemble the dominoes on the infinite 
plane, ruled into unit squares, according to the following rules: 

1. No domino may be rotated or reflected. 

2. A domino must be placed exactly over a ruled square. 

3. The symbols (colors) on adjacent domino edges must match. 

4. Every square must be covered with a domino. 

The domino set is called solvable if and only if the dominoes can be so 
assembled. A solvabe domino set is also said to "admit a tiling of the 
plane." 

The domino problem deals with the class of all domino sets. It consists 
of deciding, for each domino set, whether or not it is solvable. The domino 
problem is said to be decidable or undecidable according to whether there 
exists or does not exist an algorithm which, given the specifications of an 
arbitrary domino set, will decide whether or not the set is solvable. Implicit 
in the notion of an algorithm is that the answer will be found in a finite 
amount of time. Such an algorithm is also called a decision procedure. 

Some background on the domino problem may be found in Ref. 22. 
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T h e o r e m  7 (Berger, 1966). (21) The domino problem is unde- 
cidable. 

The obvious connection between the domino problem and the tiling 
problem is made explicit in the following theorem. 

T h e o r e m  8. The tiling problem is undecidale if v • 1. 

Proof. The domino problem deals with the class of all domino sets 
D. The tiling problem in v dimensions deals with the class of all triples 
{f2o, A, H}, where A is a finite subset o f Z  v and H c ~  A = (f2o) A, with f20 a 
finite set. 

To each domino set D we assign such a triple {DoD, AD, Hz)} in the 
following way. 

Since D is a finite set, we may number its elements, the dominoes, 
from 1 to N. The set { 1 ..... N} will be the one-site configuration space QoD- 
For A D we take a square with sides 2 in Z ~. Now construct all 2 x 2 squares 
of four dominoes that are allowed under the constraint of matching edges. 
This set of squares then defines the subset Hz) of (f20D) A~. Note that HD 
may be empty. 

It is now obvious that the domino set D is solvable if and only if HD is 
tiling. 

Suppose the tiling problem for v = 2 is decidable. Then there exists a 
decision procedure (an algorithm) to determine whether HD is tiling or not. 
This algorithm thus also constitutes a decision procedure for the domino 
problem. Since this contradicts Berger's theorem, the tiling problem for 
v = 2 must be undecidable. 

The undecidability of the tiling problem for v > 2 follows by induction, 
by considering the v-dimensional lattice as a stack of ( v -  1)-dimensional 
lattices. 

Now suppose we had succeeded in carrying out the program outlined 
at the end of Section 2, i.e., suppose we had been able to prove that all 
extremal elements of I3 are extremal in IA and that we had found some 
finite algorithm to decide whether or not any given extremal element of IA 
is extendable. We would then also be able to construct a decision 
preocedure for the tiling problem: as noted before, finding all the extremal 
elements of IA is a finite task; since there is only a finite number of them, 
verifying the extendability of each of them in turn would then also be a 
finite task; finally, since each of these extremal elements is defined by 
rational configuration probabilities, application of Corollary2 would 
decide the tiling problem, because an explicit and finite calculation would 
suffice to establish whether or not the maximum figuring in that Corollary 
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equals one. Since this contradicts Theorem 8, however, at least one of the 
following statements must be true: 

1. I~ can have extremal elements that are not extremal in IA. 

2. The problem of finding whether or not any given extremal element 
of IA is extendable is undecidable (i.e., there is no general finite algorithm 
guaranteed to accomplish this task). 

4. C V M  AT  T = 0  A N D  F R U S T R A T I O N  

In the previous section we saw that a general discussion of the cluster 
variation method leads in a natural way to the problem of characterizing 
the set of extendable, locally translation-invariant states and hence to a 
consideration of tiling problems. These tiling problems also occur in the 
construction of ground-state configurations from local energy-minimizing 
configurations, in which situation the impossibility of tiling is usually called 
"frustration," and also in this respect there is an obvious connection with 
the CVM. 

We recall the minimization problem of the CVM, Eq. (10), and we 
now make the dependence on fl = ( kT) -1  explicit: 

f l f  A = min( f lp (A~)  -- TA(p): p ~ I A } (66) 

with 

TA(p)= ~ C~AxSp[X ] (67) 
X c A  

Def in i t ion  6. The local ground-state energy eo A is 

e A = min{p(Ae): p ~IA} (68) 

States Po~ IA with p o ( A e ) =  eo A will be called local ground states. The set of 
local ground states will be denoted b y / ~  A. 

T h e o r e m  9. Let ~Sr~I A be a CVM approximation to the restric- 
tion of an equilibrium state at inverse temperature f l=  (kT)  -1, i.e., let 

f l f  A = fl~v(A~,) _ TA(/~r ) (69) 

Let t~o be a limit of such states as T~0. Let 

To = max{ T A(p ): p ~ IOA } (70) 
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Then 

/)o(A e) = e A 

and 

rA(#o) = To 

Proof. TA(p) is a continuous function of p ~ I4 and it is bounded: 

ITA(p)[ ~ B =  ~ t~AXI" IXl .log I~o l  
X ~ A  

Let P0 be any local ground state. Then 

flea ~ flfi,-(A~) = ~ f  ~ + TA(fir) 

<. fipo(Ar -- TA(Po ) + TA(fiT) 

<~ fl eA + 2B 

Hence 

(71) 

fio(Ae) = e A (72) 

Similarly, let #ePA be such that TA(t~)= To (its existence is guaranteed, 
since ~ is compact). Then 

>~ fl~6r(A~) - fl/~(A~) + rA(fi) 

= f lf ir(A,)  - fie A + To 

>--To 

Hence, TA(Po)>~ To, and thus, because of Eq. (71), 

rA(#o) = To 

Remark. Theorem 9 is just the CVM version of the exact variational 
principle valid at T =  0 as stated by Aizenman and Lieb. (23) 

In applications of the CVM it is assumed that the phase diagram at 
T > 0  is a continuous deformation of the phase diagram at T--0 .  The 
CVM free energy minimization procedure is then used to establish the 
regions of stability of phases that are known apriori: the phases that are 
present at T =  0. All T =  0 limits of CVM equilibrium states f T  are found in 
the (compact) set /~ A. A necessary condition for a physically acceptable 
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CVM approximation would then be that /~162 otherwise all 
considered phases would, at low enough temperatures, correspond to 
nonextendable, i.e., physically unacceptable, local states. 

The standard example where this happens is in the application of the 
CVM pair approximation to the Ising antiferromagnet on the triangular 
lattice: restricting attention to nearest neighbor pairs of lattice points 
means that the frustration phenomenon is not taken into account at all. 

Investigation of the condition mentioned above is usually a part of the 
procedure that is followed in practical applications of the CVM, in the 
following form: the extremal elements o f / ~  A are identified (note that these 
are also extremal in IA) and one tries to establish extendability or non- 
extendability of each of them "by inspection". (27) For simple situations a 
verdict can usually be reached, and ~ ~ 13 is taken to be the convex hull of 
the extendable extremal elements of PA. This set of local states is then used 
in a determination of the T = 0  phase diagram. This adhoc procedure is 
obviously rather unsatisfactory: the "inspection" is difficult for more 
complicated lattices, such as the face-centered cubic lattice, and large 
basic clusters A and it is not guaranteed to reach any verdict at all. Not 
surprisingly, also here attempts to devise automated procedures come up 
against the undecidability properties of tiling problems. 

Def i n i t i on  7. The set of local ground-state configurations G A ~ ("2 A 

is 

GA = ~ {supp(p): P~PA} 

T h e o r e m  10. A necessary and sufficient condition for PA and 13 to 
have a nonempty intersection is that GA is tiling. 

Proof. Let p ~ c ~ I 3 .  Since p ~ ,  supp(p )cGA.  Since p ~ I  3, 
supp(p) is tiling (Theorem 4). Hence GA is tiling. This proves necessity. 
Now suppose G A is tiling. By Theorem 5 there exists a )~ E I~ c I A with 
supp(2)CGA. Then 2 e ~ ,  which yields sufficiency, by the following 
reasoning. 

If I GAI = 1, i.e., GA consists of one configuration ~o on A, the situation 
is trivial: then PA consists of only one element 2o, defined by 20(Xff0) = 1 and 
supp(2) ~ GA implies 2 = 2o. 

If [GA[ ;> 1, we argue as follows. For any a t  GA there is a p ~  ~ with 
Po(X~) > 0. Define 

1 

,6 = IG4I ,,~ G,~ 
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Then fie PA and supp(f i)= GA; with 

m = min{/~(xA): a ~ GA } 

M =  max {r o ' e  GA} 

we have for all ~r e GA 

- '  A ) ~ M < *  (73) 0<m~<p txo  

Now suppose 2 ( A e ) >  e6 ~. Choose ~ such that 0 < e < m and write 

21 = (fi - a2)/(i  - :~) (74) 

Then 21aIA, supp(21)=GA, but 21(Ae)<e0  A, which contradicts the 
definition of e0 A. Thus, it must be that ;t(Ae) = e A, or 2 ~ I  ~ 

If GA is not tiling, then we encounter frustration: local energy- 
minimizing configurations cannot be extended to global ones. The only 
relevant freedom at this point in setting up the CVM approximation is the 
choice of the basic cluster A, and it should thus be chosen large enough to 
prevent this frustration phenomenon. While in many situations that arise in 
practice it will be obvious how large a frustration-preventing basic cluster 
should be, a general finite criterion for such a choice does not exist. For  
this would imply the existence of an algorithm to decide whether G A is 
tiling or not, and such an algorithm cannot exist. The fact that sets of local 
ground-state configurations are not arbitrary subsets of s A does not 
detract from the validity of the argument: this is a consequence of the 
observations that precisely those subsets of (2 A that support some element 
of IA are the sets of local ground-state configurations for some interaction 

with Ae)e C(s and that this includes all the strictly tiling subsets of 
s A detailed discussion of this point may be found in Ref. 12. 

5. D I S C U S S I O N  

In the CVM an approximate expression for the free energy density of a 
classical lattice system is minimized to obtain information about the 
equilibrium situation. This minimum is sought by variation over the set of 
local states I A. The set I A can easily be characterized by a finite set of local 
conditions. However, only those elements of I A that are the restriction of 
an element of I, i.e., of a global translation-invariant state, can have a 
physical interpretation. Neglecting this aspect basically means that essential 
frustration effects are not taken into account by the approximation, and 
this can result in completely erroneous predictions. To prevent this, one 
would want to solve the minimization problem in the set I~ of extendable 
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locally translation-invariant states. For that, a suitable characterization of 
I~ would be needed. 

Theorem 1 identifies necessary and sufficient conditions for a linear 
functional 2 defined on a subspace of C(g2) to be the restriction of an 
element of L Both conditions C.1 and C.2 as stated in this theorem are not 
directly amenable to verification in practice. Theorem 2 shows that the 
infinite set of equality constraints that make up C.1 can be replaced by a 
finite number of constraints that can be used in actual calculations. The 
reduction of C.2 to a form that can be used in practical application of the 
CVM is not as readily accomplished. Guided by existing ad hoc procedures, 
we formulated an attempt at such a reduction. This led to an investigation 
of the relationship between the problem of characterizing I~ and so-called 
tiling problems. From the formal undecidability of the tiling problem, we 
concluded that our attempt was doomed to fail, and hence the adhoc 
practice cannot be given a rigorous justification in general. Corollary 2 
actually implies the nonexistence of any characterization of I~ that would 
allow an exact (i.e., without numerical inaccuracy) solution of the 
maximization problem stated there. 

This still leaves the practical problem of characterizing I]  in some way 
that can be employed in the actual CVM variational calculation, since we 
have only succeeded in showing that the existing ad hoc procedure will not 
do in the general case. Perhaps the most interesting question in this context 
is if (or when) I~ has a finite number of extreme points. If such is,the case, 
then only a finite number of the inequalities of condition C.2 are effective 
constraints and the problem is reduced to identifying these effective ones. 
(Note that this possibility is not a priori excluded by the relation to the 
tiling problem: if nonrational configuration probabilities are involved, it 
may no longer be possible to determine in a finite amount of time whether 
the maximum in Corollary 2 equals 1 or not.) Otherwise, practical advan- 
tages might still be obtained if it is possible to characterize some suitable 
sequence of approximations An to I~ that converges to I~ in some sense. 
Replacing I~ by IA would then correspond to something like a zero-order 
approximation. Improvement of a CVM approximation could then take 
two directions: a better approximation of the mean entropy than is given 
by TA or a better approximation to I~ than is provided by IA. Suggestions 
for improvement in the first direction are contained in Ref. 12. 
Improvement in the second direction only results if I~ is actually a proper 
subset of IA and if p(A~) -  TA(p) takes its minimum value in Ia\I]. In 
current practice the only way to improve on any given approximation is to 
choose a larger basic cluster A; this, however, increases the dimensionality 
of the minimization problem and thus the required computational effort, 
and is therefore not always feasible. 
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With respect to the construction of ground-state configurations and 
the choice of a "frustration-preventing" basic cluster, it may be interesting 
to remark that this problem not only occurs in the CVM but, e.g., also in 
the work of Holsztynski and Slawny on verification of the Peierls 
condition(24~: they remark on the necessity of choosing a potential for a 
given Hamiltonian in such a way that local ground-state configurations can 
be patched together; their selection problem is identical to the one in the 
CVM, and the nonexistence of a systematic selection procedure thus also 
pertains to their verification criterion. 

Finally, we stress that all the undecidability results depend crucially on 
the generality of the problem that is considered. Decision procedures for 
certain subclasses of the general problem will often exist. Thus, for certain 
clusters A or certain configuration spaces 12 o a complete, finite, and exact 
characterization of I3 may be obtainable. The identification of such cases 
can be of practical relevance. Some results in this direction may be found in 
Refs. 3 and 12. 
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